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ABSTRACT

An efficient method of solving the three-body Schroedinger equation is

presented. The wave function is decomposed into the product of a

correlation factor describing the singularity and clustering structure, and

a smooth factor expanded in hyperspherical harmonics. The application to

the Helium atom yields a ground state energy of 2.9037244 (2.9033052) au for

infinite (finite) nuclear mass. The convergence pattern shows that the

accuracy of these values is better than a few parts in 14/1



The hyperspherical harmonic methodl-5 is one of the most general

methods of solving the few-body Schroedinger equation. Theoretically, this

method is able to handle problems involving three, four, five or more

interacting particles. Practically, however, the huge degeneracy of the

hyperspherical basis and the slow convergence of the method for realistic

interactions lead to intimidatingly large sets of coupled (one-dimensional)

equations even for modern computers to handle. )t.erefore, most calculations

6-10to date have either employed only a limited number of hypersphericals

which leads to a significant loss in accuracy, or have employed a select,

restricted basis, e.g., the "optimal subset method" used by Fabre and

others.
11-1 5

Clearly, when the wave function is expanded in a complete set of

hyperspherical basis functions, one Is assured that the wave function and

expectation values converge to the correct values. This advantage is not

present in ad hoc variational wave functions or in wave functions built on

an incomplete set. The main purpose of the present paper is to introduce a

technique to dramatically hasten the convergence of the hyperspherical

expansion in order to make it suitable for high precision calculations.

The main idea we consider is to decompose the wave function 41 as a

product of two terms, i.e., t .

(1 (1)--



whereX is known and chosen to take into account singularities and

clustering properties of the wave function, and is the part to be expanded

in hypersphericals. Of course, any wave function carn be expressed in the

form of Eq. (1), so for the method to be practical X must be reasonably

simple to obtain, the equations for 0 should not be overly complicated,

and 4, should be smooth enough so as to be readily expressible in a small

number of hypersphericals. We will demonstrate the fulfillment of these

conditions for the case of the ground state of the helium atom.

The idea to separate a "configuration" part A of the wave function to

improve the convergence of the hyperspherical harmonic expansion is not

new. A separation of the form q/ = xt4 has been employed to apply the

hyperspherical technique in nuclear scattering problems 1 6 1 8 , but these

calculations either only employ a very few hypersphericals or do not use

realistic nuclear forces. A separation of the product form of Eq. (1) has

been applied to nuclear bound states19 , but here the optimal subset and

other approximations were employed. Furthermore, predicted nuclear

properties were compared to those calculated by completely different other

methods, which were themselves approximate. Thus any firm assessment of the

ultimate accuracy of the decomposition of Eq. (1) was difficult to make.

To obtain a better understanding of the product decomposition (1), we

limit ourselves in this paper to the problem of three Coulomb-bound

particles - specific-'ly the Helium atom. Here the potential is exactly

known and many very precise calculations have been carried out by

variational2 0"23 methods, so comparisons can be done. ?lore importantly,

the Cnlomb potential has exactly the same type of singularity at the origin

as realistic nuclear potentials (i.e., Yukawa e " r/r), and it is the



nature of this singularity that leads to the slow convergence of the

hyperspherical expansion in either atomic or nuclear systems. Indeed, for

the 1/r type of behavior, the hyperspherical expansion for large maximum

global angular momentun K converges as a/K2 for wave functions

and b/K. for energies, compared to the exponential convergence

(%e CKm) for smooth (e.g., Gaussian) potentials10 ,13 ,14 ,24 ,25 . While

the power or exponential laws of convergence depend on the singularity

structure of the potential, the coefficients a,b,c, involved in the

convergence laws , which also determine the accuracy of the expansion,

depend on other features of the system, most notably the cluster structure.

In the case of clustered nonsymmetric dispostion of particles in space,

these coefficients tend to be large leading to significant discrepancies of

results for finite Km with "exact" results. Indeed, it is known5 that

one must include Km=KR global angular momentum states to accurately

describe a system of binding energy K
2/21 (M = particle mass) and

characteristic dimension R. Hence, in the case of an excited atom in which

a clustered configuration exists where one (or more) constituents is

positioned far away from the rest, convergence will be slow even for smooth,

nonsingular potentials.

Since convergence is determined by both singularity and cluster

properties, the hope is that a simple but clever choice of% , reflecting

the physical peculiarities of the problem, will yield a smooth function

describable with only a few hyperspherical harmonics. One simple choice

for X is that of product correlation functions of 
the Jastrow type

26

X K V- f-i-) = f(m.)wnn a)f 3i r mm (2)



where r is the distance between particles i, J. Since for the bound

ij

state the'wave function W in (1) should be exponentially decreasing with

interparticle distance, a natural choice of f could be

(3)

where Ti. are adjustable parameters. We shall shortly see that this

exponential type is also appropriate to handle the short-range correlations

brought about by I/rij singularities in the potential.

In the case of the ground state of the helium atom, the spatial wave

function must be symmetric under interchange of the two electrons. It is

convenient to choose X and separately symmetric, which means '13 =

'23 -:" , so we have

;4= -2rrt2,3 )- 'r (4)

where = " Substitution of (1) and (4) into the three-body

Schroedinger equation, in the center-of-mass frame

nql= (5a)

where

yieds

H - (6a)

where f ( 76 V (6b)



I

and where the effective (velocity-dependent) potential V is given by

VV2X/X -Zl + /r 0 (7)

Eqs. (5) - (7) are written In atomic units (au), where e = me = = e,

with Jacobi coordinates r)=o((ri - r 2 ),96=7 (r, + r2 -2r 3),

= I/ ,6 =, .+2, with Z, I.I being the nuclear charge and mass,

respectively. The operator I is the six-dimensional gradient operator

given by V 'got

One choice of 5' and that reduces the degree of singularity of the

Coulomb potential (or any l/rij potential) at zero interparticle distance

is the choice

: M /(M- , :I/z.(8)

In this case, as one can easily check, the I/r type sinjularit'es in le

Coulomb potential are exactly cancelled by corresponding singularities in

the - 1/2 1Ux/)x term, so the effective potential V is never

infinite. However, V contains scalar products of unit vectors along

interparticle distances. These scalar products suffer finite

discontinuities when any zero interparticle distance (rij = 0) is crossed

in any direction, so the effective potential, while discontinuous at

ri = 0, at leost is bounded. The result is that the second derivative

of f is bounded (though discontinuous) with an infinite third derivative.

In the usual Schroedinger equation with the Coulofib potential it is the

first derivative



that is bounded and discontinuous (i.e., there are cusps in the wave

function). This means the hyperspherical expansion for f will converge

as wI/K 3 as opposed to - I/K.

Note that the - .,V term in the effective potential V in (7)

is nonhermitian. Equations (5) and (6) are, nevertheless, strictly

equivalent and have identical eigenvalues. Approximation of functionf by a

finite sum of hyperspherical harmonics, however, destroys the equivalence.

The eigenvalues of the truncated versions of (6) could, in principle, even

he complex. However, they approach real values both in the limits of just

one hyperspherical harmonic and when the set becomes complete. Since

eigenvalues are real in both of these disparate limits (N = 1, N-x' ), one

should not be surprised that, in practice, the eigenvalues of equation (6)

remain real for truncation at any number of hyperspherical functions. This

is, in fact, the case in our actual calculations.

Another consequence of the nonhermiticity of the Hamiltonian of Eq. (6)

is that the error in the elgenvalue E of this equation is no longer

proportional to the square of the error in the wave function. This property

is applicable to the usual hyperspherical expansion of the wavefunction of

Eq. (5), but not to our modification which instead expands solutions of Eq.

(6). Therefore, we cannot expect the energy eigenvalue of Eq. (6) to

necessarily converge monotonically from above. It now may oscillate around

the correct limit. More precisely, since for a normalized wavefunction

E < I x O I < Of H IX' O>



we shnuld expect, if E is r'al , that 9E=F-E =K

Since at1/K , while I(X" l/K 2 due to the fact that

2 contains cusps, which reflects the singularities of the Coulomb
5

potential,SE converges as l/Km . That means that differences 5EK

FK - F K -2 between energy values calculated for different Km fall

off at least as fast as I/K6 , although nonmonotonically.

The monotonic convergence of 'FK .% l/K7  can be recovered by

equating the eneroy to the expectatinn value of the true Hamiltonian

calculated with the wave functions f obtained in our method instead of to

the eigenvalues of Ej. (6). (The two prescriptions are not equivalent as

they are in the ijsui! hyperspherical treatment). In this letter we present

results for the eigenvalues as we have not as of yet implemented the

evaluation of wave functions and expectation values in our calculations.

The results of the calculations of the ground-state eigenvalue of

rq. (') for the helium atom are summarized in Table I, along with

conparisons with the usual hyperspherical method 9-10 and results obtained

by variational methods 20 23 . The numerical method is essentially the same

as in refs. 9-10, except that different Taylor series are enployed on

numerous sections of the arid in the hyperradius / as opposed to a sinnle

MacLaurin series around 4 = 0 in these earlier works. This procedure

enables us to obtain twelve decimal place accuracy in the integration of the

resulting coupled differential equations with CrAY single-precision

arithmetic. Analytic expressions 27 are available for the matrix elements

of the Coulomb part of the effective potential (7). We have derived

analytic expressions for



most of the matrix elements of the remaining portion of (7), but a part of

the V'x /_ term requires numerical evaluation. Here using a 1600 by 1600

mesh in the A and A variables 10,27 leads to an trrrr of less than one

part in 2.9 x 109 for the eigenvalue of Eq. (6).

The energy differences S EK = EK - EK -2 are given in Table

II. In order to find the law of convergence, we have fit SEK (for

K, 716) with exponetially and inverse power decaying oscillating

functions; however, t 'e best fits consistently preferred the inverse power

over the Pxponontial decay. The optimum form, as judged by X2 per degree

of freedom, is given by

with N = 2, = 0 giving the best fit . When all remaining parameters,

including the overall powero( of K-1 were allowed to vary freely, we

obtained the following values: Ao =-0.04, A1 = -1.98, A2 = 0.49,4i=

0.78. The 'EK calculated in this fit also appear in Table II. The

value for *(, including standard error, is o<= 5.96,t .22. This agrees

fairly well with the theoretically predicted I/K6m convergence.

In summary, we have presented a method of direct (nonvariational)

solution of the three-body Schroedinger equation based on the expansion of

the smooth part of the product wave function into a rapidly convergent

hyperspherical series. The application of the method to the calculation of

the ground state energies of the Helium atom shows its competiveness with

the best available variational calculations20 3, and its superiority to

other attempts of direct solutions of the Schroedinger equation, such as



those based on the finite difference
28 and the finite element 29

rethods. The possibility of accurate calculations without assumptions about

the form of the wavefunction, as well as the nonperturbative treatment of

the center-of-mass motion, makes our direct method of solution especially

attractive for excited systems and systems of particles of comparable

masses. These systems are difficult to treat by the variational method.

One of the authors (V.B.11.) wishes to express his gratitude to the U.S.

Pppartment of EnPrgy for their support of this work. '!e also thank Drs. E.F.

Pedish and John Vorgan III for helpful remarks.
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Table 1

Calculated ground state energies of the Helium aton in au. Km is the

maximum global angular momentum and N the number of resulting equations

solved. The energy values in the three columns are for an infinite mass

nucleus, a finite mass nucleus (Me/Mnucleus = 1.3709337 x 10"4), and

for the usual hyperspherical expansion9 '10 (infinite mass nucleus).

Km N EKV EKn E

,Infinite mass) (Finite mass) (Unmodified hypersphericals)

0 1 2.9767604 2.9765759 2.50002

4 4 2.91026686 2.90989022 2.78437

8 9 2.90321786 2.90281192 2.85022

12 16 2.90390765 2.90349598 2.87601

16 25 2.90370440 2.90328900 2.88754

20 36 ?.90374150 2.90332453 2.89358

24 49 2.90372303 2.90330507

28 64 2.90372743 2.90330892

32 81 2.903724364 2.903305480

36 100 2.903725184 2.903306065

40 121 2.903724448 2.903305161

Other 2.903723721 2.903303721

Methods 2.90372437620 2.90330436520

2.90372437722,23 2.90330437420



Table II

The ground state energy differences = EK "EK -2 for an

infinite mass nucleus. (E K  (fit) are the energy difference obtained in

our fitting analysis with the parameters given in the text.

Km M SFK (au) SF K  (fit) (au)

2 -.0930d7?

4 .C2691113

6 -.0C,375277

8 -. 003296(14

10 .00009660

12 .00059320

14 -.00009451

16 -.00010874 -.00010205

18 -.00000258 -.0C001414

?0 .00003968 .00004279

22 -. 00000839 -.00000629

24 -.00001008 -.00000911

26 -.00000216 -.00000142

28 .00000656 .00000575

30 -.00000145 -.00000105

32 -.000001622 -.000001639

34 -.000000375 -.000000255

36 .000001195 .000001282

38 -.000000370 -.000000271

40 -.000000366 -.000000434


